Connected Places Catapult # Failure Mode and Effect Analysis for Testing in a Controlled Car Park December 2019 **Autonomous Valet Parking** | Version
Number | Reason for Update | Updated By | Date | |-------------------|-----------------------|------------------|------------| | 0.1 | First release | Richard Hillman | 25/02/2019 | | 1.0 | Testing in a car park | Adrian Beford | 21/11/2019 | | 1.1 | Ready for Publication | Maysun Hassanaly | 17/12/2019 | #### **Description:** The FMEA is based on the functional architecture of the AVP system. Each possible fault that could occur within the system is considered and how that fault will affect the rest of the system, including any failures or other undesirable behaviours that the fault could cause the system as a whole to display. This is referred to as a 'bottom- up' or 'inductive' approach, as it starts with the fault (at a low level) and works up to the effect on the high-level behaviour of the system, as opposed to 'top-down' or 'deductive' analysis (e.g. Fault Tree Analysis), which starts at the high-level failure and works downward to identify the fault(s) that form the root cause. A workshop was held with the project consortium, where participants were asked to identify what possible failures could occur in each sub-subsystem, what the local effect would be on the subsystem in which it resides, and whether this would result in any undesired vehicle-level behaviours. It was decided not to apply severity and likelihood scores to each failure (this is commonly referred to as Failure Modes, Effects and Criticality Analysis, FMECA) due to the difficulty in estimating reasonable scores (each failure typically causes a low chance of a high severity accident, a higher chance of a lower severity accident, plus an infinite number of variations on the spectrum between these points), the limited resources available, and the fact that there would have been little that the creation of such prioritisation scores would achieve in the project anyway. However, Safety Goals (i.e. high-level requirements for what should be done to mitigate the risks) were logged for each fault, and these were incorporated into the Requirements Spreadsheet, with corresponding test cases and acceptance criteria being added. ### **Notice** By using this safety report ("the Report") produced by the Connected Places Catapult ("CPC") you accept this disclaimer in full. The Report has been prepared in good faith on the basis of information, findings and analysis of our specific research activity entitled "Autonomous Valet Parking". All information contained in the Report is provided "as is" and CPC does not guarantee or warrant the accuracy, reliability or completeness of the information in the Report or its usefulness in achieving any particular outcome or purpose. CPC does not owe a duty of care to any third-party readers. You are responsible for assessing the relevance and accuracy of the content of this publication. You must not rely on the Report as an alternative to seeking appropriate advice. and nothing in the Report shall to any extent substitute for consultation with an appropriately qualified advisor. You must obtain professional or specialist advice before taking, or refraining from, any action on the basis of the content of the Report. To the fullest extent permitted by law, CPC excludes all conditions, warranties, representations or other terms which may apply to the Report or any content in it, whether expressed or implied. CPC will not be liable to any user for any loss or damage, whether in contract, tort (including negligence), breach of statutory duty, or otherwise, including without limitation loss of or damage to profits, sale business, revenue, use, production, anticipated savings, business opportunity, goodwill, reputation or any indirect or consequential loss or damage. Nothing in the Report excludes or limits CPC's for any liability that cannot be excluded or limited by English law. Any entity seeking to conduct autonomous vehicle trials will need to develop and publish a safety case specific to their own trials (as specified by the government's Centre for Connected & Autonomous Vehicles (CCAV) Code of Practice for Automated Vehicle Trialling) and gain permission to do so. ### **FUNDING:** The Autonomous Valet Parking project is part-funded by the Centre for Connected and Autonomous Vehicles (CCAV), delivered in partnership with Innovate UK. It is part of the government's £100 million Intelligent Mobility Fund, supporting the Future of Mobility Grand Challenge. As a key part of the UK government's modern Industrial Strategy, the Future of Mobility Grand Challenge was announced in 2017 to encourage and support extraordinary innovation in UK engineering and technology, making the UK a world leader within the transport industries. This includes facilitating profound changes in transport technologies and business models, to make the movement of people, goods and services across the nation greener, safer, easier and more reliable. Innovate UK | | Sy | ystem De | scription | | | | | Failure Effect/Safety Impact | | | F | Poten | ıtial Oı | ıtcom | e | | | | | | |-----|----|------------|----------------------|----------------|--|---|--|---|--|--------------------|-----------------------|------------------|----------|--------------------|------------------|-------------|---|---|--|---| | Ref | | Owner | Sub-Syste m | Sub-sub-system | Failure Mode | Possible Failure
Causes | Local | AVP System | Operational
Situation with
harm
Safety Impact | Loss of AD Control | Unintended
braking | Unintended Accel | Steering | Lacking of Braking | Lack of Steering | Driver take | Detection
Method | Existing Controls
Risk Elimination or
Mitigation Measures | Additional Controls
Risk Elimination or
Mitigation Measures | Safety Goal | | 1 | | AVP | Entire AVP sub-ystem | N/A | No data output - No
situational
awareness | | No message to system | No input in the AVP system. | Vehicle remains in
AD mode. Safety
driver made aware
of the failure via
warning (visual) in
order to stop the
trial when safe to
do so. | × | | | | | | x | Visual alert given
to the driver | Safety Driver able to make
manual control inputs to
override the autonomous
system | | Detection of driver intervention shall be ensured. (Already part of StreetDrone) Display of actual operating mode and alarm in HMI when AVP control unavailable shall be ensured (Allready part of StreetDrone) | | 2 | | | | | | Failure in app/
failure of comms | Mission not requested | Vehicle does not respond | None | | | | | | | | нмі | Alert / notification given to the user | N/A | N/A | | 3 | | | | User Input | Wrong output | Incorrect request
sent/failure in
app/map not up
to date | Mission planning plans wrong mission | Assuming no other failures, wrong mission will be carried out succesfully | Low safety risk,
however need to
consider whether
marshalls will be
caught out by
unexpected
journey, vehicle
will leave
controlled area
etc. | 2 | × × | × | x | х | x | x | Safety Driver
identifies that
vehicle is
carrying the
wrong
manoeuvres | Safety Driver able to make
manual control inputs to
override the autonomous
system | Safety driver to take manual control of the vehicle if they feel there is insufficient safety margin to allow time to react to the alert and gain full control before an incident (e.g. oncoming vehicle with wide load meaning gap for passing will leave small error margin) | Detection of driver intervention shall be ensured • Safety Driver to take manual control where they feel the error margin is insufficient to allow them to detect and correct an error in time • Safety Driver able to transition instantaneously from AD to MD mode with a single button press or driving input when not satisfied with the safety of the current situation • Steering actuation beyond specification shall be prevented | | 4 | | Parkopedia | Mission Control | | Incorrect but
plausible output -
error not detectable
by system | Computation error etc. | Incorrect route information passed to subsystems | Unsuitable path planned as a result of erroneous input. System unable to identify error | Vehicle remains in
AD mode and
attempts to adopt
improper
trajectory or speed | 2 | x x | × | x | × | x | × | Safety Driver
identifies that
vehicle has
deviated from a
reasonable
trajectory/
velocity | Safety Driver able to make
manual control
inputs to
override the autonomous
system | Safety driver to take manual control of the vehicle if they feel there is insufficient safety margin to allow time to react to the alert and gain full control before an incident (e.g. oncoming vehicle with wide load meaning gap for passing will leave small error margin) | Detection of driver intervention shall be ensured • Safety Driver to take manual control where they feel the error margin is insufficient to allow them to detect and correct an error in time • Safety Driver able to transition instantaneously from AD to MD mode with a single button press or steering or brake input when not satisfied with the safety of the current situation • Steering actuation beyond specification shall be prevented by StreetDrone calibration of full lock. | | | System De | escription | | | | I | Failure Effect/Safety Impact | | | | Pote | ential (| Outco | ne | | | | | | | |-----|------------|--------------|----------------|---|--|--|---|--|--------------------|-----------------------|------------------|------------------------|--------------------|---------------|---------------------------------|-------------|---|---|--|--| | Ref | Owner | Sub-Syste m | Sub-sub-system | Failure Mode | Possible Failure
Causes | Local | AVP System | Operational
Situation with
harm
Safety Impact | Loss of AD Control | Unintended
braking | Unintended Accel | Unintended
Steering | Lacking of Braking | Lack of Accel | Lack of Steering
Driver take | control | Detection
Method | Existing Controls
Risk Elimination or
Mitigation Measures | Additional Controls
Risk Elimination or
Mitigation Measures | Safety Goal | | 5 | | | | output | Electric failure,
coms link failure,
Mechanical
failure, HMI
failure | No predefined
uploaded map | AVP system unable to provide a path to the vehicle System transitions from autonomous driving to manual driving | AD system disconnects and reverts to Manual Driving Mode Safety driver has to take control of vehicle as quickly as possible, with no prior notice | x | | | | | | x | ١ ١ | Visual alarm
when AD system
disconnected | Highly trained safety driver Safety driver alert at all time and with hands on steering wheel and foot on the pedal ready to take over at any point in time | Safety driver to take manual control of the vehicle if they feel there is insufficient safety margin to allow time to react to the alert and gain full control before an incident (e.g. oncoming vehicle with wide load meaning gap for passing will leave small error margin) | Safety Driver to be provided with visual alert when the vehicle transitions from AD to MD mode due to a fault Safety Driver to take manual control where they feel the error margin is insufficient to allow them to detect and correct an error in time Safety Driver able to transition instantaneously from AD to MD mode with a single button press or driving input when not satisfied with the safety of the current situation | | 6 | | | | Malfunction- no connectivity | Coms link failure,
network issues in
car park | App cannot connect
to the software and
feed into the mission
control module | The park, summon and stop
functions cannot be
activated via the app | No safety
implications since
the mission will
not start | | | | | × : | c : | x x | c 1 | нмі | Driver takes over | | Safety Driver to take manual control where they
feel the error margin is insufficient to allow them to
detect and correct an error in time | | 7 | Parkopedia | Connectivity | 3G/4G | Cyber attack | Spoofing or man-
in-the-middle
attacks (privacy
and security) | The app and safety engineer cannot control the vehicle | Vehicle reacts differently than expected | Potential
collision/accident | x | x | x : | x | x x | (| x x | i | Safety Driver identifies that vehicle has deviated from a reasonable trajectory/ velocity | Safety Driver able to make
manual control inputs to
override the autonomous
system | Safety driver has to take control of vehicle as quickly as possible, if possible, or turn off the vehicle manually. | Safety Driver to take manual control where they
feel the error margin is insufficient to allow them to
detect and correct an error in time | | 8 | | | | User interface
malfunction | Wrong function selected by error etc. | Incorrect command sent to the car via the app | Vehicle reacts differently than expected | Potential collision/accident | | x | x : | x | K 2 | (: | x x | c I | НМІ | Safety Driver takes control | | Safety Driver to take manual control where they
feel the error margin is insufficient to allow them to
detect and correct an error in time | | 9 | | | VO/SLAM | Scale of odometry is wrong | Wrong
calibration data
used | Incorrect values calculated | Incorrect signal to sensor fusion | Vehicle loses
position estimate | | | | | | | x | c a | Detection of
signal going
above the
threshold
HMI | Stereo vision with known baseline supports allows accurate estimate of scale. | | Avoid the safety drivert from having to intervene | | 10 | | | | Baysian probabilities
produce "ghost"
solutions | Noisy sensor
measurement | Incorrect values calculated | tracking | Vehicle loses
position estimate
or gives estimate
that is wrong | | | | | | | | i
C
I | Safety Driver
identifies that
vehicle has
deviated from a
reasonable
trajectory/
velocity | Safety Driver able to make
manual control inputs to
override the autonomous
system | | Avoid colision | | | System D | escription | | | | ı | Failure Effect/Safety Impact | | | | Potei | ntial C | utcor | ne | | | | | | | |-----|---------------|--------------|----------------|---|---|---|--|--|--------------------|-----------------------|------------------|------------------------|--------------------|---------------|---------------------------------|-----------------------------|---|---|--|---| | Ref | Owner | Sub-Syste m | Sub-sub-system | Failure Mode | Possible Failure
Causes | Local | AVP System | Operational
Situation with
harm
Safety Impact | Loss of AD Control | Unintended
braking | Unintended Accel | Unintended
Steering | Lacking of Braking | Lack of Accel | Lack of Steering
Driver take | control | Detection
Method | Existing Controls Risk Elimination or Mitigation Measures | Additional Controls
Risk Elimination or
Mitigation Measures | Safety Goal | | 11 | | | | Faulty inputs | Increased uncertainty over position, belief becomes uniform. Effectively the same as kidnapped robot problem. Need to begin localisation from scratch | Incorrect values
calculated | tracking | Vehicle loses
position estimate
or gives estimate
that is wrong | | | | | | | | id
ve
de
re
tra | ehicle has
eviated from a | Safety Driver able to make
manual control inputs to
override the autonomous
system | | Avoid colision | |
12 | Uni of Surrey | Localisation | Sensor Fusion | Incorrect output
that is detectable
(clearly wrong) | Computational error etc. | Incorrect data sent to
navigation or route
planning | Error messages provided to subsystems Vehicle unable to maintain autonomous control | Vehicle transitions immediately to manual driving mode. Safety driver made aware of the failure via warning (visual) | x | | | | | | x | | isual alert given
o the driver | Safety Driver able to make manual control inputs to override the autonomous system asking: A. Can I match the surroundings with the map? B. Havel been here before? C. Is it the right sensor data? Are the sensors working correctly? D. Should I "be here"? E. Sensor fusion outcome/delays | Safety driver to take manual control of the vehicle if they feel there is insufficient safety margin to allow time to react to the alert and gain full control before an incident (e.g. oncoming vehicle with wide load meaning gap for passing will leave small error margin) | Safety Driver to be provided with visual alert when the vehicle transitions from AD to MD mode due to a fault Safety Driver to take manual control where they feel the error margin is insufficient to allow them to detect and correct an error in time Safety Driver able to transition instantaneously from AD to MD mode with a single button press or driving input when not satisfied with the safety of the current situation | | 13 | | | | Incorrect but plausible output - error not detectable by system | Computational error etc. | Incorrect data sent to
navigation or route
planning | Incorrect path sent to the
AVP system. | Vehicle remains in
AD mode and
attempts to adopt
improper
trajectory or speed | | x | x x | × × | × × | ξ 13 | × | id
ve
de
re
tra | afety Driver
lentifies that
chicle has
eviated from a
casonable
ajectory/
elocity | Safety Driver able to make manual control inputs to override the autonomous system asking: A. Can I match the surroundings with the map? B. Have I been here before? C. Is it the right sensor data? Are the sensors working correctly? D. Should I "be here"? E. Sensor fusion outcome/delays | Safety driver to take manual control of the vehicle if they feel there is insufficient safety margin to allow time to detect and correct the deviation (e.g. oncoming vehicle with wide load meaning gap for passing will leave small error margin) | Detection of driver intervention shall be ensured Safety Driver to take manual control where they feel the error margin is insufficient to allow them to detect and correct an error in time Safety Driver able to transition instantaneously from AD to MD mode with a single button press or driving input when not satisfied with the safety of the current situation Steering actuation beyond specification shall be prevented | | | System De | escription | | | | ļ | Failure Effect/Safety Impact | | | ı | Pote | ntial (| Outco | ne | | | | | | |-----|-----------|-------------|---------------------|--|---|--|--|--|-----|-----------------------|------------------|------------------------|--------------------|---------------|---------------------------------|---|--|--|--| | Ref | Owner | Sub-Syste m | Sub-sub-system | Failure Mode | Possible Failure
Causes | Local | AVP System | Operational
Situation with
harm
Safety Impact | sof | Unintended
braking | Unintended Accel | Unintended
Steering | Lacking of Braking | Lack of Accel | Lack of Steering
Driver take | Detection
Method | Existing Controls
Risk Elimination or
Mitigation Measures | Additional Controls
Risk Elimination or
Mitigation Measures | Safety Goal | | 14 | | | | uninterpretable/
clearly incorrect | Computational
error, electrical
failure, coms link
failure, etc. | No input data sent to
navigation or route
planning | Subsystems unable to function. No input to the AVP system. Vehicle unable to maintain autonomous control | Vehicle transitions
immediately to
manual driving
mode.Safety driver
made aware of the
failure via warning
(visual) | × | | | | | | x | visual alert given
to the driver | Safety Driver able to make manual control inputs to override the autonomous system asking: A. Can I match the surroundings with the map? B. Have I been here before? C. Is it the right sensor data? Are the sensors working correctly? D. Should I "be here"? E. Sensor fusion outcome/delays | Safety driver to take manual control of the vehicle if they feel there is insufficient safety margin to allow time to react to the alert and gain full control before an incident (e.g. oncoming vehicle with wide load meaning gap for passing will leave small error margin) | Safety Driver to be provided with visual alert when the vehicle transitions from AD to MD mode due to a fault Safety Driver to take manual control where they feel the error margin is insufficient to allow them to detect and correct an error in time Safety Driver able to transition instantaneously from AD to MD mode with a single button press or driving input when not satisfied with the safety of the current situation | | 15 | | | Scene Understanding | Malfunction - no
output or no
interpretable output | Computational error etc. | | Subsystems unable to function.No input to the AVP system. Vehicle unable to maintain autonomous control | Vehicle remains in
AD mode. Safety
driver made aware
of the failure via
warning (visual) in
order to stop the
trial when safe to
do so. | | x | x | x | x | x | x x | Visual alert given
to the driver
HMI | Safety Driver able to make
manual control inputs to
override the autonomous
system | | Detection of driver intervention shall be ensured. Display of actual operating mode and alarm in HMI when AVP control unavailable shall be ensured | | 16 | | | | | Computational error etc. | | Subsystems unable to function. No input to the AVP system. Vehicle unable to maintain autonomous control | Vehicle remains in
AD mode and
attempts to adopt
improper
trajectory or speed | | х | х | x | x | x | x x | Visual alert given
to the driver
HMI | Safety Driver able to make
manual control inputs to
override the autonomous
system | | Detection of driver intervention shall be ensured. Display of actual operating mode and alarm in HMI when AVP control unavailable shall be ensured | | 17 | | | | Misrepresentation of
the environment -
error detectable (i.e.
implausible signal) | Computational error etc. | | Subsystems unable to function. No input to the AVP system. Vehicle unable to maintain autonomous control | Vehicle remains in
AD mode. Safety
driver made aware
of the failure via
warning (visual) in
order to stop the
trial when safe to
do so. | | × | x | x | х | x | x | Safety Driver
identifies that
vehicle has
deviated from a
reasonable
trajectory/
velocity | Safety Driver able to make
manual control inputs to
override the autonomous
system | Safety driver to take manual control of the vehicle if they feel there is insufficient safety margin to allow time to detect and correct the deviation (e.g. oncoming vehicle with wide load meaning gap for passing will le | Detection of driver intervention shall be ensured. Safety Driver to take manual control where they feel the error margin is insufficient to allow them to detect and correct an error in time Safety Driver able to transition instantaneously from AD to MD mode with a single button press or driving input when not satisfied with the safety of the current situation Steering actuation beyond specification shall be prevented | | | System D | escription | | | | | Failure Effect/Safety Impact | | | P | otent | tial Ou | tcom | ne | | | | | | |-----|------------|-------------|----------------|--|---|--|---|--|--------------------|---------------|------------|----------|--------------------|------------------
-------------|---|---|--|--| | Ref | Owner | Sub-Syste m | Sub-sub-system | Failure Mode | Possible Failure
Causes | Local | AVP System | Operational
Situation with
harm
Safety Impact | Loss of AD Control | braking Accel | Unintended | Steering | Lacking of braking | Lack of Steering | Driver take | Detection
Method | Existing Controls
Risk Elimination or
Mitigation Measures | Additional Controls
Risk Elimination or
Mitigation Measures | Safety Goal | | 18 | Parkopedia | | | Incorrect but
plausible output -
error not detectable
by system | Computational error etc. | navigation and route | Incorrect path would be sent
to navigation and route
planning | Vehicle remains in
AD mode and
attempts to adopt
improper
trajectory or speed | | x | C : | x : | × | x | x | Safety Driver
identifies that
vehicle has
deviated from a
reasonable
trajectory/
velocity | Safety Driver able to make
manual control inputs to
override the autonomous
system | Safety driver to take manual control of the vehicle if they feel there is insufficient safety margin to allow time to react to the alert and gain full control before an incident (e.g. oncoming vehicle with wide load meaning gap for passing will leave small error margin) | Detection of driver intervention shall be ensured • Safety Driver to take manual control where they feel the error margin is insufficient to allow them to detect and correct an error in time • Safety Driver able to transition instantaneously from AD to MD mode with a single button press or driving input when not satisfied with the safety of the current situation • Steering actuation beyond specification shall be prevented | | 19 | | | | Incorrect output
that is detectable
(Clearly wrong) | Computational error etc. | Incorrect data sent to
navigation and route
planning | Error messages provided to
AVP system, vehicle unable
to maintain autonomous
control | Vehicle transitions immediately to manual driving mode. Safety driver made aware of the failure via warning (visual) | x | | | | | | x | visual alert given
to the driver | Safety Driver able to make
manual control inputs to
override the autonomous
system | Safety driver to take manual control of the vehicle if they feel there is insufficient safety margin to allow time to react to the alert and gain full control before an incident (e.g. oncoming vehicle with wide load meaning gap for passing will leave small error margin) | Safety Driver to be provided with visual alert when the vehicle transitions from AD to MD mode due to a fault Safety Driver to take manual control where they feel the error margin is insufficient to allow them to detect and correct an error in time Safety Driver able to transition instantaneously from AD to MD mode with a single button press or driving input when not satisfied with the safety of the current situation | | 20 | | | | Segmentation fault | Close match to
another shape | Hazard not identified | Continue to drive a path towards a hazard | Incorrect and
potentially
dangerous
behaviour | | 3 | « | x : | × | > | x | Safety driver to take control | Safety Driver able to make
manual control inputs to
override the autonomous
system | Safety driver to take manual control of the vehicle if they feel there is insufficient safety margin to allow time to react to the alert and gain full control before an incident (e.g. oncoming vehicle with wide load meaning gap for passing will leave small error margin) | Safety Driver to be provided with visual alert when the vehicle transitions from AD to MD mode due to a fault Safety Driver to take manual control where they feel the error margin is insufficient to allow them to detect and correct an error in time Safety Driver able to transition instantaneously from AD to MD mode with a single button press or driving input when not satisfied with the safety of the current situation | | 21 | | | | | LIDAR/UT/Radar
malfunction or
failure | Wrong distances
computed/erroneous
messages sent to
safety cage module
and path planning | System does not stop when it
should | Accident/incident | , | × | x | x | x | x | x | Safety Driver
takes over
Alert
HMI | Safety Driver able to make
manual control inputs to
override the autonomous
system | Safety driver to take manual control of the vehicle if they feel there is insufficient safety margin to allow time to react to the alert and gain full control before an incident (e.g. oncoming vehicle with wide load meaning gap for passing will leave small error margin) | Detection of driver intervention shall be ensured • Safety Driver to take manual control where they feel the error margin is insufficient to allow them to detect and correct an error in time • Safety Driver able to transition instantaneously from AD to MD mode with a single button press or driving input when not satisfied with the safety of the current situation • Steering actuation beyond specification shall be prevented | | | Systen | n Desc | cription | | | | ı | Failure Effect/Safety Impact | | | | Pote | ential C | utcor | ne | | | | | | | |-----|--------|--------|-------------|----------------|---|---|--|--|--|--------------------|-----------------------|------------------|------------------------|--------------------|---------------|---------------------------------|---|--|---|--|---| | Ref | Owner | | Sub-Syste m | Sub-sub-system | Failure Mode | Possible Failure
Causes | Local | AVP System | Operational
Situation with
harm
Safety Impact | Loss of AD Control | Unintended
braking | Unintended Accel | Unintended
Steering | Lacking of Braking | Lack of Accel | Lack of Steering
Driver take | Dete
Met | ction
thod | Existing Controls
Risk Elimination or
Mitigation Measures | Additional Controls
Risk Elimination or
Mitigation Measures | Safety Goal | | 22 | | | Perception | nity Detection | Malfunction - no
output or no
interpretable output | Computational error etc. | No input to behaviour
planning or mission
planning | System safe stop fails.
Unsuitable path planned | Vehicle remains in
AD mode. Safety
driver made aware
of the failure via
warning (visual) in
order to stop the
trial when safe to
do so. | | | | | | | х | visual ale
to the dr | river | Safety Driver able to make
manual control inputs to
override the autonomous
system | | Detection of driver intervention shall be ensured. Display of actual operating mode and alarm in HMI when AVP control unavailable shall be ensured Visual alert shall be provided to the Safety Driver | | 23 | | | Perce | | Misrepresentation of
the environment -
error NOT detectable
(i.e. plausible
output) | Computational error etc. | No input to behaviour
planning or mission
planning | System safe stop fails.
Unsuitable path planned | Vehicle remains in
AD mode and
attempts to adopt
improper
trajectory or speed | | х | x | x | x | x | x | Safety Dr
identifie
vehicle h
deviated
reasonab
trajector
velocity
HMI | es that
nas
I from a
ole
ry/ | Safety Driver able to make
manual control inputs to
override the autonomous
system | Safety driver to take manual control of the vehicle if they feel there is insufficient safety margin to allow time to detect and correct the deviation (e.g. oncoming vehicle with wide load meaning gap for passing will leave small error margin) | Detection of driver intervention shall be ensured Safety Driver to take manual control where they feel the error margin is insufficient to allow them to detect and correct an error in time Safety Driver able
to transition instantaneously from AD to MD mode with a single button press or driving input when not satisfied with the safety of the current situation Steering actuation beyond specification shall be prevented | | 24 | | | | | Misrepresentation of
the environment -
error detectable (i.e.
implausible output) | Computational error etc. | No input to behaviour
planning or mission
planning | System safe stop fails.
Unsuitable path planned | Vehicle remains in
AD mode. Safety
driver made aware
of the failure via
warning (visual) in
order to stop the
trial when safe to
do so. | | | | | | | x | visual ale
to the dr
HMI | river | Safety Driver able to make
manual control inputs to
override the autonomous
system | | Detection of driver intervention shall be ensured. Display of actual operating mode and alarm in HMI when AVP control unavailable shall be ensured AVP subsystem to have ability to recognise when output trajectory or velocity is clearly inappropriate Visual alert shall be provided to the Safety Driver | | 25 | | | | | | Power loss,
broken
connection etc | No input to behaviour
planning or mission
planning | Autonomous control not possible | Safety driver made
aware of the failure
via warning | x | | | | | | x | Safety Dr
takes ove
HMI | er | Safety Driver able to make
manual control inputs to
override the autonomous
system | Safety driver to take manual control of the vehicle if they feel there is insufficient safety margin to allow time to react to the alert and gain full control before an incident (e.g. oncoming vehicle with wide load meaning gap for passing will leave small error margin) | Detection of driver intervention shall be ensured • Safety Driver to take manual control where they feel the error margin is insufficient to allow them to detect and correct an error in time • Safety Driver able to transition instantaneously from AD to MD mode with a single button press or driving input when not satisfied with the safety of the current situation | | | System De | escription | | | | I | Failure Effect/Safety Impact | | | | Potei | ntial C | Outco | ne | | | | | | |-----|------------|-------------|--------------------|---|--|--|---|---|--------------------|-----------------------|------------------|------------------------|--------------------|---------------|---------------------------------|---|--|---|--| | Ref | Owner | Sub-Syste m | Sub-sub-system | Failure Mode | Possible Failure
Causes | Local | AVP System | Operational
Situation with
harm
Safety Impact | Loss of AD Control | Unintended
braking | Unintended Accel | Unintended
Steering | Lacking of Braking | Lack of Accel | Lack of Steering
Driver take | Detection
Method | Existing Controls
Risk Elimination or
Mitigation Measures | Additional Controls
Risk Elimination or
Mitigation Measures | Safety Goal | | 26 | Parkopedia | | Prediction | Plausible but
incorrect data | Corrupted data,
design limitations
or system etc | Mission planning and
behaviour planning
fed incorrect data | Behaviour may be wrong,
prediction would have no
effect (object well away from
path may have no influence
anyway) | Vehicle may adopt
wrong path/speed.
Safety Driver
perceives and
corrects | | x | × × | : | x | : x | × | Safety Driver
takes over
HMI | Safety Driver able to make manual control inputs to override the autonomous system asking: A. Can I match the surroundings with the map? B. Have I been here before? C. Is it the right sensor data? Are the sensors working correctly? D. Should I "be here"? E. Sensor fusion outcome/delays | | Detection of driver intervention shall be ensured. Display of actual operating mode and alarm in HMI when AVP control unavailable shall be ensured AVP subsystem to have ability to recognise when output trajectory or velocity is clearly inappropriate Visual alert shall be provided to the Safety Driver | | 27 | | | | Malfunction - no
output or no
interpretable output | Computational
error etc. | Erroneous signal to
Path Planner | Erroneous signal to rest of system | Safety Driver made
aware of the failure
via warning (visual)
in order to stop the
trial when safe to
do so. | | | | | | | × | Safety Driver
identifies that
vehicle has
deviated from a
reasonable
trajectory/
velocity | Safety Driver able to make manual control inputs to override the autonomous system | Safety driver to take manual control of the vehicle if they feel there is insufficient safety margin to allow time to detect and correct the deviation (e.g. oncoming vehicle with wide load meaning gap for passing will leave small error margin) | Detection of driver intervention shall be ensured Safety Driver to take manual control where they feel the error margin is insufficcient to allow them to detect and correct an error in time Safety Driver able to transition instantaneously from AD to MD mode with a single button press or driving input when not satisfied with the safety of the current situation Steering actuation beyond specification shall be prevented | | 28 | | | Behaviour Planning | Misrepresentation of
the environment -
error NOT detectable
(i.e. plausible
output) | Computational error etc. | Erroneous signal to
Path Planner | Incorrect path sent | Vehicle remains in
AD mode and
attempts to adopt
improper
trajectory or speed | | x | x x | c : | × | × | | visual alert given
to the driver
HMI | Safety Driver able to make
manual control inputs to
override the autonomous
system | | Detection of driver intervention shall be ensured. Display of actual operating mode and alarm in HMI when AVP control unavailable shall be ensured AVP subsystem to have ability to recognise when output trajectory or velocity is clearly inappropriate ie when the covariance produced by the localisation method is greater than 3 sigma Visual alert given to the driver | | 29 | | | Beha | Misrepresentation of
the environment -
error detectable (i.e.
implausible output) | Computational error etc. | Erroneous signal to
Path Planner | | Safety Driver made
aware of the failure
via warning
(audio/visual) in
order to stop the
trial when safe to
do so. | | | | | | | x | visual alert given
to the driver
HMI | Safety Driver able to make
manual control inputs to
override the autonomous
system | | Detection of driver intervention shall be ensured. Display of actual operating mode and alarm in HMI when autonomous control unavailable. Visual alert given to the driver | | | Syste | em Des | scription | | | | | Failure Effect/Safety Impact | | | | Poten | tial O | ıtcon | ne | | | | | | |-----|-------|--------|-------------|----------------|--|-------------------------------------|---|---|--|--------------------|-----------------------|------------------|----------|--------------------|---------------|---------------------------------|---|---|---
---| | Ref | Owner | Owner | Sub-Syste m | Sub-sub-system | Failure Mode | Possible Failure
Causes | Local | AVP System | Operational
Situation with
harm
Safety Impact | Loss of AD Control | Unintended
braking | Unintended Accel | Steering | Lacking of Braking | Lack of Accel | Lack of Steering
Driver take | Detection
Method | Existing Controls
Risk Elimination or
Mitigation Measures | Additional Controls
Risk Elimination or
Mitigation Measures | Safety Goal | | 30 | | | | | incorrect
waypoints/path | Wrong file
selected | Erroneous data to
Path Planner | Erroneous commands
produced | Wrong areas or fail
to reach target
Lead to undrivable
route or hit
obstacles | | | | | | | х | Safety Driver
identifies that
vehicle has
deviated from a
reasonable
trajectory/
velocity | Safety Driver able to make
manual control inputs to
override the autonomous
system | Safety driver to take manual control of the vehicle if they feel there is insufficient safety margin to allow time to detect and correct the deviation (e.g. oncoming vehicle with wide load meaning gap for passing will leave small error margin) | Detection of driver intervention shall be ensured. Display of actual operating mode and alarm in HMI when autonomous control unavailable. Visual alert given to the driver | | 31 | | | | Camera | Misalignment,
improper lighting -
erroneous output | Mechanical
Failure | Erroneous absolute
depth measurement
accuracy and depth
resolution | Camera self-diagnoses failure
and/ or AVP subsystems
detect invalid input
System transitions from
autonomous driving to
manual driving | AD system
disconnects and
reverts to Manual
Driving Mode
Safety driver has to
take control of
vehicle as quickly
as possible, with
no prior notice | x | | | | | | , | Visual and
audible alarm
when AD system
disconnected
HMI | Highly trained Parkopedia safety driver Safety driver alert at all time and with hands on steering wheel and foot on the pedal ready to take over at any point in time | Safety driver to take manual control of the vehicle if they feel there is insufficient safety margin to allow time to detect and correct the deviation (e.g. oncoming vehicle with wide load meaning gap for passing will leave small error margin) | Safety Driver to be provided with visual alert when the vehicle transitions from AD to MD mode due to a fault Safety Driver to take manual control where they feel the error margin is insufficient to allow them to detect and correct an error in time Safety Driver able to transition instantaneously from AD to MD mode with a single button press or driving input when not satisfied with the safety of the current situation | | 32 | | | | | Misalignment -
erroneous output,
failure NOT
detectable | Mechanical
Failure | Erroneous absolute
depth measurement
accuracy and depth
resolution | Unsuitable path planned as a result of erroneous input. | Vehicle remains in
AD mode and
attempts to adopt
improper
trajectory or speed | | x | x | x | × | x | x | Safety Driver
identifies that
vehicle has
deviated from a
reasonable
trajectory/
velocity | Safety Driver able to make
manual control inputs to
override the autonomous
system | Safety driver to take manual control of the vehicle if they feel there is insufficient safety margin to allow time to detect and correct the deviation (e.g. oncoming vehicle with wide load meaning gap for passing will le | Detection of driver intervention shall be ensured Safety Driver to take manual control where they feel the error margin is insufficient to allow them to detect and correct an error in time Safety Driver able to transition instantaneously from AD to MD mode with a single button press or driving input when not satisfied with the safety of the current situation Steering actuation beyond specification shall be prevented | | 33 | | | | | Malfunction | Low/very bright
light conditions | V/O fails, scene
understanding fails | Unsuitable path planned as a result of erroneous input. | Vehicle remains in
AD mode and
attempts to adopt
improper
trajectory or speed | | x | x | x | × | x | x | Safety Driver
identifies that
vehicle has
deviated from a
reasonable
trajectory/
velocity | Safety Driver able to make
manual control inputs to
override the autonomous
system | Safety driver to take manual control of the vehicle if they feel there is insufficient safety margin to allow time to detect and correct the deviation (e.g. oncoming vehicle with wide load meaning gap for passing will leave small error margin) | Detection of driver intervention shall be ensured Safety Driver to take manual control where they feel the error margin is insufficient to allow them to detect and correct an error in time Safety Driver able to transition instantaneously from AD to MD mode with a single button press or driving input when not satisfied with the safety of the current situation Steering actuation beyond specification shall be prevented | | | System D | escription | | | | | Failure Effect/Safety Impact | | | | Pote | ntial C | Outcor | ne | | | | | | | |-----|----------|------------|----------------|--|---|---------------------------------------|---|--|--------------------|-----------------------|------------------|------------------------|--------------------|---------------|------------------|----------------------------------|---------------------|---|---|---| | Ref | Owner | Sub-System | Sub-sub-system | Failure Mode | Possible Failure
Causes | Local | AVP System | Operational
Situation with
harm
Safety Impact | Loss of AD Control | Unintended
braking | Unintended Accel | Unintended
Steering | Lacking of Braking | Lack of Accel | Lack of Steering | control | Detection
Method | Existing Controls
Risk Elimination or
Mitigation Measures | Additional Controls
Risk Elimination or
Mitigation Measures | Safety Goal | | 34 | | | | Malfunction | | Misinterpretation of object detection | Unsuitable path planned as a result of erroneous input. | Vehicle remains in
AD mode and
attempts to adopt
improper
trajectory or speed | | x | x | x | x | x | x | id
v
d
x
r
t
t | rajectory/ | Safety Driver able to make
manual control inputs to
override the autonomous
system | Safety driver to take manual control of the vehicle if they feel there is insufficient safety margin to allow time to detect and correct the deviation (e.g. oncoming vehicle with wide load meaning gap for passing will leave small error margin) | Detection of driver intervention shall be ensured Safety Driver to take manual control where they feel the error margin is insufficient to allow them to detect and correct an error in time Safety Driver able to transition instantaneously from AD to MD mode with a single button press or driving input when not satisfied with the safety of the current situation Steering actuation beyond specification shall be prevented | | 35 | | | | Malfunction - no
output or unusable
output for Data
Recording | | No recording of the environment | No effect on AV control Alert when there is a problem with recording data Test to cease, not appropriate to continue without data recording - Safety Driver to take manual control as soon as it is safe to do so | None | | | | | | | > | x A | Mert | N/A | N/A | N/A | | 36 | | | | Malfunction - no
output | Electric failure,
coms link failure,
etc. | No output | System transitions from
autonomous driving to
manual driving | AD system
disconnects and
reverts to Manual
Driving Mode
Safety driver has
to take control of
vehicle as quickly
as possible, with
no prior notice | х | | | | | | × | x d | | Highly trained Parkopedia safety driver Safety driver alert at all time and with hands on steering wheel and foot on the pedal ready to take over at any point in time Localisation system monitored for error and staleness of information. | Safety driver to
take manual control of the vehicle if they feel there is insufficient safety margin to allow time to detect and correct the deviation (e.g. oncoming vehicle with wid load meaning gap for passing will leave small error margin) | Detection of driver intervention shall be ensured. Display of actual operating mode and alarm in HMI when AVP control unavailable shall be ensured AVP subsystem to have ability to recognise when output trajectory or velocity is clearly inappropriate Heart beat monitor for timelyness and staleness of information | | | Sy | ystem De | scription | | | | | Failure Effect/Safety Impact | | | | Pote | ential (| Outco | me | | | | | | |-----|----|------------|------------------|----------------|---|--|--|--|--|--------------------|-----------------------|------------------|------------------------|--------------------|---------------|------------------|---|--|--|--| | Bof | į | Owner | Sub-Syste m | Sub-sub-system | Failure Mode | Possible Failure
Causes | Local | AVP System | Operational
Situation with
harm
Safety Impact | Loss of AD Control | Unintended
braking | Unintended Accel | Unintended
Steering | Lacking of Braking | Lack of Accel | Lack of Steering | Detection
Method | Existing Controls
Risk Elimination or
Mitigation Measures | Additional Controls
Risk Elimination or
Mitigation Measures | Safety Goal | | 3 | 7 | | | Wheel Odometry | Miscalibration: over
or underestimate of
distance travelled | Lose connection
to sensor | Wrong output | Wrong localisation output. | Vehicle remains in
AD mode and
attempts to adopt
improper
trajectory or speed | | × | х | x | x | x | x | Safety Driver
identifies that
vehicle has
deviated from a
reasonable
trajectory/
velocity | Safety Driver able to make
manual control inputs to
override the autonomous
system | Safety driver to take manual control of the vehicle if they feel there is insufficient safety margin to allow time to detect and correct the deviation (e.g. oncoming vehicle with wide load meaning gap for passing will leave small error margin) | Detection of driver intervention shall be ensured Safety Driver to take manual control where they feel the error margin is insufficient to allow them to detect and correct an error in time Safety Driver able to transition instantaneously from AD to MD mode with a single button press or driving input when not satisfied with the safety of the current situation Steering actuation beyond specification shall be prevented | | 3 | 8 | | | | Erroneous output,
fault detectable | Computation error etc. | Erroneous vehicle
sensor data passed to
subsystems | CAN network and associated sensors/ systems self-diagnose failure | AD system
disconnects and
reverts to Manual
Driving Mode
Safety driver has to
take control of
vehicle as quickly
as possible, with
no prior notice | x | | | | | | | Visual and
audible alarm
when AD system
disconnected
HMI | Safety driver alert at all time
and with hands on steering
wheel and foot on the pedal
ready to take over at any
point in time | Safety driver to take manual control of the vehicle if they feel there is insufficient safety margin to allow time to react to the alert and gain full control before an incident (e.g. any other vehicle means a stop and restart of the test) | Safety Driver to be provided with visual alert when the vehicle transitions from AD to MD mode due to a fault Safety Driver to take manual control where they feel the error margin is insufficient to allow them to detect and correct an error in time Safety Driver able to transition instantaneously from AD to MD mode with a single switch when not satisfied with the safety of the current situation Safety Driver is able to take control of steering and braking without turning switch. | | 3 | 9 | Parkopedia | Sensor Interface | DBW Sensors | Erroneous output,
fault NOT detectable | Electric failure,
coms link failure,
Mechanical
failure, etc. | Erroneous vehicle
sensor data passed to
subsystems | Unsuitable path planned as a result of erroneous input. AVP system unable to identify error | Vehicle remains in
AD mode and
attempts to adopt
improper
trajectory or speed | | x | х | x | x | x | х | Safety Driver
identifies that
vehicle has
deviated from a
x reasonable
trajectory/
velocity | Safety Driver able to make
manual control inputs to
override the autonomous
system | Safety driver to take manual control of the vehicle if they feel there is insufficient safety margin to allow time to react to the alert and gain full control before an incident (e.g. any other vehicle means a stop and restart of the test) If this information is used in a future algorithm then a monitor of the timelyness or staleness should be created. | Detection of driver intervention shall be ensured Safety Driver to take manual control where they feel the error margin is insufficient to allow them to detect and correct an error in time Safety Driver able to transition instantaneously from AD to MD mode with a single switch when not satisfied with the safety of the current situation Safety Driver is able to take control of steering and braking without turning switch. Steering actuation beyond specification shall be prevented | | 4 | 0 | | | | No output | Electric failure,
coms link failure,
Mechanical
failure, etc. | No output | AVP subsystems detect no input from CAN network, and pass error message. System transitions from autonomous driving to manual driving | AD system
disconnects and
reverts to Manual
Driving Mode
Safety driver has to
take control of
vehicle as quickly
as possible, with
no prior notice | | x | x | x | x : | × | × | Visual and
audible alarm
when AD system
disconnected
HMI | Safety driver alert at all time
and with hands on steering
wheel and foot on the pedal
ready to take over at any
point in time | Safety driver to take manual control of the vehicle if they feel there is insufficient safety margin to allow time to react to the alert and gain full control before an incident (e.g. any other vehicle means a stop and restart of the test) | Safety Driver to be provided with visual alert when the vehicle transitions from AD to MD mode due to a fault Safety Driver to take manual control where they feel the error margin is insufficient to allow them to detect and correct an error in time Safety Driver able to transition instantaneously from AD to MD mode with a single switch when not satisfied with the safety of the current situation Safety Driver is able to take control of steering and braking without turning switch. | | | System D | escription | | | | I | Failure Effect/Safety Impact | | | | Pote | ential | Outco | me | | | | | | | |-----|----------|-------------|----------------|---|----------------------------|--|--|--|--------------------|-----------------------|------------------|------------------------|--------------------|---------------|------------------|------------------------|---|---
---|---| | Ref | Owner | Sub-Syste m | Sub-sub-system | Failure Mode | Possible Failure
Causes | Local | AVP System | Operational
Situation with
harm
Safety Impact | Loss of AD Control | Unintended
braking | Unintended Accel | Unintended
Steering | Lacking of Braking | Lack of Accel | Lack of Steering | Driver take
control | Detection
Method | Existing Controls
Risk Elimination or
Mitigation Measures | Additional Controls
Risk Elimination or
Mitigation Measures | Safety Goal | | 41 | | | | No GPS signal | Covered car park | Safety driver to take manual control of the vehicle if they feel there is insufficient safety margin to allow time to detect and correct the deviation (e.g. oncoming vehicle with wide load meaning gap for passing will leave small error margin) Safety heart beat check for staleness of the messages. | False input into the
navigation | Unecessary
stops/swerves,
collisions | | x | × | x | x | x | x | | Safety Driver
identifies that
vehicle has
deviated from a
reasonable
trajectory/
velocity | Safety Driver able to make
manual control inputs to
override the autonomous
system | Safety driver to take manual control of the vehicle if they feel there is insufficient safety margin to allow time to react to the alert and gain full control before an incident (e.g. any other vehicle means a stop and restart of the test) If this information is used in a future algorithm then a monitor of the timelyness or staleness should be created. | Safety Driver to be provided with visual alert when the vehicle transitions from AD to MD mode due to a fault Safety Driver to take manual control where they feel the error margin is insufficient to allow them to detect and correct an error in time Safety Driver able to transition instantaneously from AD to MD mode with a single switch when not satisfied with the safety of the current situation Safety Driver is able to take control of steering and braking without turning switch. | | 42 | | | GPS/MU | IMU error | Loose on its
mounting | Affects sensor fusion | False input into the
navigation | Unecessary
stops/swerves,
collisions | | х | x : | × | х | х | x | x | Safety Driver
identifies that
vehicle has
deviated from a
reasonable
trajectory/
velocity | Safety Driver able to make
manual control inputs to
override the autonomous
system | Safety driver to take manual control of the vehicle if they feel there is insufficient safety margin to allow time to react to the alert and gain full control before an incident (e.g. any other vehicle means a stop and restart of the test) If this information is used in a future algorithm then a monitor of the timelyness or staleness should be created. | Safety Driver to be provided with visual alert when the vehicle transitions from AD to MD mode due to a fault • Safety Driver to take manual control where they feel the error margin is insufficient to allow them to detect and correct an error in time • Safety Driver able to transition instantaneously from AD to MD mode with a single switch when not satisfied with the safety of the current situation • Safety Driver is able to take control of steering and braking without turning switch. | | 43 | | | | Misalignment -
erroneous output,
failure detectable | Mechanical
failure | Irregular and sparse
nature of the
collected point cloud | System transitions from
autonomous driving to
manual driving | AD system
disconnects and
reverts to Manual
Driving Mode
Safety driver has to
take control of
vehicle as quickly
as possible, with
no prior notice | x | | | | | | | v | Visual and
audible alarm
when AD system
disconnected
HMI | Highly trained Parkopedia safety driver Safety driver alert at all time and with hands on steering wheel and foot on the pedal ready to take over at any point in time Localisation system monitored for error and staleness of information. | Safety driver to take manual control of the vehicle if they feel there is insufficient safety margin to allow time to detect and correct the deviation (e.g. oncoming vehicle with wide load meaning gap for passing will leave small error margin) | Detection of driver intervention shall be ensured. Display of actual operating mode and alarm in HMI when AVP control unavailable shall be ensured AVP subsystem to have ability to recognise when output trajectory or velocity is clearly inappropriate Heart beat monitor for timelyness and staleness of information | | | System Description | | | | | Failure Effect/Safety Impact | | | | Pote | ential | Outco | me | | | | | | | | |-----|--------------------|------------|----------------|--|---|--|--|--|--------------------|-----------------------|------------------|------------------------|--------------------|---------------|------------------|---------|--|---|---|--| | Ref | Owner | Sub-System | Sub-sub-system | Failure Mode | Possible Failure
Causes | Local | AVP System | Operational
Situation with
harm
Safety Impact | Loss of AD Control | Unintended
braking | Unintended Accel | Unintended
Steering | Lacking of Braking | Lack of Accel | Lack of Steering | control | Detection
Method | Existing Controls
Risk Elimination or
Mitigation Measures | Additional Controls Risk Elimination or Mitigation Measures | Safety Goal | | 44 | | | LIDAR | Misalignment -
erroneous output,
failure NOT
detectable | Mechanical
failure | Irregular and sparse
nature of the
collected point cloud | System transitions from autonomous driving to manual driving Lidar safety cage may fail | AD system
disconnects and
reverts to Manual
Driving Mode
Safety driver has to
take control of
vehicle as quickly
as possible, with
no prior notice | | x :: | :x | x | × | x x | . > | x (| Visual and
audible alarm
when AD system
disconnected
HMI | Highly trained Parkopedia safety driver Safety driver alert at all time and with hands on steering wheel and foot on the pedal ready to take over at any point in time Localisation system monitored for error and staleness of information. | Safety driver to take manual control of the vehicle if they feel there is insufficient safety margin to allow time to detect and correct the deviation (e.g. oncoming vehicle with wide load meaning gap for passing will leave small error margin) | Detection of driver intervention shall be ensured. Display of actual operating mode and alarm in HMI when AVP control unavailable shall be ensured AVP subsystem to have ability to recognise when output trajectory or velocity is clearly inappropriate Heart beat monitor for timelyness and staleness of information | | 45 | | | | Malfunction - no
output | Electric failure,
coms link failure,
etc. | No output | System transitions from
autonomous driving to
manual driving
Lidar safety cage may fail | AD system
disconnects and
reverts to Manual
Driving Mode
Safety driver has to
take control of
vehicle as quickly
as possible, with
no prior notice | | × | × : | x | x | x x | . > | x (| Visual and
audible alarm
when AD system
disconnected
HMI | Highly trained Parkopedia safety driver Safety driver alert at all time and with hands on steering wheel and foot on the pedal ready to take over at any point in time Localisation system monitored for error and staleness of information. | Safety driver to take manual control of the vehicle if they feel there is insufficient safety margin to allow time to detect and correct the deviation (e.g. oncoming vehicle with wide load meaning gap for passing will leave small error margin) | Detection of driver intervention shall be ensured. Display of actual operating mode and alarm in HMI when AVP control
unavailable shall be ensured AVP subsystem to have ability to recognise when output trajectory or velocity is clearly inappropriate Heart beat monitor for timelyness and staleness of information | | 46 | | | Ultrasonic | False detection | Dirt on sensor. Rou | Wrong input to proximity detection | Auto safe stop is activated and vehicle stops. | AD system disconnects and reverts to Manual Driving Mode Safety driver has to take control of vehicle as quickly as possible, with no prior notice | × | x | | | | | , | x I | нмі | Reduce false alarm rates so
the system is kept switched
on. | Choose a sutable surface and path staying away from obstructions. | Reduce false alarms so the system remains useful | | 47 | | | | Missed true
detection | Opaque/ clear
surfaces | No input to proximity detection | Auto safe stop not activated and possible collision | Could hit a threat | | | | | x | | , | x I | Safetry driver
notices threat
and brakes or
evades it. | Test to provide assurance that the system works as expected Safety driver will switch to manual mode if the threat is missed. | Safety driver training and practice | Reduce chance of impacts with any threat objects | | | System Description | | | | | Failure Effect/Safety Impact | | | | Poten | itial Oi | itcom | e | | | | | | | |-----|--------------------|----------------|--------------------|---|--|---|--|--|--------------------|-----------------------|------------------|----------|--------------------|------------------|-------------|---|---|--|--| | Ref | Owner | Sub-Syste m | Sub-sub-system | Failure Mode | Possible Failure
Causes | Local | AVP System | Operational
Situation with
harm
Safety Impact | Loss of AD Control | Unintended
braking | Unintended Accel | Steering | Lacking of Braking | Lack of Steering | Driver take | Detection
Method | Existing Controls
Risk Elimination or
Mitigation Measures | Additional Controls
Risk Elimination or
Mitigation Measures | Safety Goal | | 48 | | | | NO OULPUL | Total failure or
false negative
detecting heart
beat | No stop message to mission planning | Vehicle keeps going when it should stop due to fault in other module | Test continues
with 2 failures
remaining latent (if
second failure
happens
elsewhere) | x | x x | : x | x | х | x | x | нмі | Continuous or regular "ok"
messages from failsafe
recovery to mission planning,
issue warning if messages not
received | Since this is a to monitor other failures, its failure will not cause a dangerous action itself. "Who shall watch the watchmen themselves" | Reduce chance of impacts with any threat objects | | 49 | Parkopedia | Auto-Safe Stop | Fail Safe Recovery | Malfunction | False positive | Mission control told
to stop vehicle | Vehicle stops unnecessarily | No safety risk | x | x x | : x | х | х | x | x | нмі | Continuous or regular "ok"
messages from failsafe
recovery to mission
planning, issue warning if
messages not received | Since this is a to monitor other failures, its failure will not cause a dangersou action itself. "Who shall watch the watchmen themselves" | Reduce chance of impacts with any threat objects | | 50 | | A | | Unable to function | Power loss,
physical
damange,
disconnection
Sensor failure | No safety message to vehicle interface when hazard presents | Fault remains latent | Safety curtain
doesn't work
where needed
Possible collision | | | | x | | | x | Safetry driver
notices threat
and brakes or
evades it. | Send "safe" messages to
vehicle itnerface after
continuously or at regular
time period. If vehicle
interface doesn't receive it,
notify Safety Driver or fault | | Reduce false alarms so the system remains useful | | 51 | | | | False command - too
big | Integral windup | Very high throttle request | High throttle request will be passed to SD | Very high
acceleration or
braking | x | × | : | | | | x | Safety driver can
easily detect
sudden,
unexpected
changes | Filtering techniques
Reset PID gain when stopped
Set integral limit
Limit torque command | | Maintain safe autonomous control | | 52 | | | Path Following | False command -
sudden change
(eg. noise) | Electrical fault | | Wrong commands issued to SD | High acceleration
or braking | × | x x | : x | x | x | x | x | With training
and experience
the safety driver
can detect subtle
differences and
small deviations
from the
intended path | Filtering techniques
Reset PID gain when stopped
Set integral limit
Limit torque command | | Maintain safe autonomous control | | 53 | Parkopedia | Control | Patl | Slow path
degradation | Poor localisation | Controller not able to achieve desired trajectory | Wrong commands issued to SD | Collision | | x x | : x | x | х | х | x | Monitoring system | Safety driver takes control
Path following deviation
check | | Maintain safe autonomous control | | | System Description | | | | | Failure Effect/Safety Impact | | | | Poten | tial O | utcom | ne | | | | | | | |-----|--------------------|-----------------|----------------------------|---|-----------------------------------|---|---|---|--------------------|-----------------------|------------------|----------|--------------------|---------------|-------------|---|--|--|--| | Ref | Owner | Sub-Syste m | Sub-sub-system | Failure Mode | Possible Failure
Causes | Local | AVP System | Operational
Situation with
harm
Safety Impact | Loss of AD Control | Unintended
braking | Unintended Accel | Steering | Lacking of Braking | Lack of Accel | Driver take | Detection
Method | Existing Controls
Risk Elimination or
Mitigation Measures | Additional Controls
Risk Elimination or
Mitigation Measures | Safety Goal | | 54 | | | | Path provided
exceed capabilities
of vehicle (eg.
turning circle too
tight) | Path planning
failure | Controller not able to achieve desired trajectory | Wrong path taken | Loss of vehicle control | x | x | x x | | | | x | Non applicable
to detection
method | Kinematic limit check in
Autoware
StreetDrone steering change
rate limit | | Safety Driver to take manual control where they
feel the turning circle is too tight | | 55 | | | Vehicle Interface | Cannnot send CAN
message/command
to control the
vehicle | loose connection | Safety cage and/or
Path following | Possible collison | Vehicle cannot be stopped | х | | | x | х | x | х | Handshake
message
between PC PX2
and the vehicle | The StreetDrone will come out of autonomous mode and notify the driver with the red flashing light and an audible warning. | | StreetDrone will alert driver audibly and visually when it returns control to the driver | | 56 | | | Publisher | No output | No input | tf state not shown | Poses within the system will
be wrong | System will not run | | | | x | x | x | | нмі | StreetDrone will not go into autonomous mode | | StreetDrone will alert driver audibly and visually when it refuses autonomous mode | | 57 | | | Vehicle tf State Publisher | Wrong input | Malfunction/erro
r/wrong input | Erroneous tf state
shown | Navigation and Motion control | Incorrect path and location | | x | x x | x | x | x | x | Monitoring system | Safety driver to intervene | | Safety Driver to take manual control | | 58 | | | | Malfunction - not able to accept or record inputs | Disk failure | No maps available to vehicle systems | Not run | System will not run | | | | | | | | нмі | StreetDrone will not go into autonomous mode | The test will not run without a map | StreetDrone will
alert driver audibly and visually when it refuses autonomous mode | | 59 | | | Map Server | Malfunction - not able to show outputs | Blank map | Maps available to vehicle systems but are of no use | Rviz cannot display | Incorrect path and location | | | | | | | | НМІ | Safety driver to intervene | The test will not run without a map | StreetDrone will alert driver audibly and visually when it refuses autonomous mode | | 60 | | | | No output | Malfunction | Maps cannot be
downloaded | No route planning | System will not run | | | | | | | | НМІ | StreetDrone will not go into autonomous mode | The test will not run without a map | StreetDrone will alert driver audibly and visually when it refuses autonomous mode | | 61 | Parkopedia | Global Services | | Corrupted output
indicated Emergency
Braking required | Computational error etc. | Signal requiring
Autonomous
Emergency Braking
sent to dbw system | Emergency braking request
sent to braking system
(Current assumption is that
AEB will be possible)
Vehicle performs emergency
stop | Vehicle still in AD mode, brakes rapidly to a standstill Risk of incident if another vehicle is following closely behind or if vehicle is pulling out of a parking spot | | x | | | | | | Autonomous
Emergency
Braking will be
obvious to Safety
Driver | We won't be running when other vehicles are around. Highly trained safety driver able to override braking by switching to manual mode (black rotating switch to the right) | We won't be running when other vehicles are around. Ensure safety driver wareing seatbelt. | Detection of driver intervention shall be ensured. Safety Driver to prevent vehicle pulling out at a parking spot, where the gap would be insufficient for Safety Driver or other road users to respond in the event of undesired behaviour by the AVP vehicle Safety driver to take manual control if a following vehicle is close enough to cause a significant risk of collision in the event of heavy braking by the AVP vehicle Safety Driver able to transition instantaneously from AD to MD mode with a single button press or driving input when not satisfied with the safety of the current situation Support vehicle to followAVP vehicle at a safe distance | | | System Description | | | | Failure Effect/Safety Impact | | | | | Potent | tial Ou | tcome | e | | | Existing Controls | Additional Controls | | | |-----|--------------------|-------------|----------------|---|------------------------------|-----------------------------|-------------------------|--|--------------------|-----------------------|------------------|-------|---------------|------------------|------------------------|---------------------|--|--|-------------| | Ref | Owner | Sub-Syste m | Sub-sub-system | Failure Mode | Possible Failure
Causes | Local | | Operational
Situation with
harm
Safety Impact | Loss of AD Control | Unintended
braking | Unintended Accel | 1 | Lack of Accel | Lack of Steering | Driver take
control | Detection
Method | Risk Elimination or
Mitigation Measures | Risk Elimination or
Mitigation Measures | Safety Goal | | 62 | | | Log File | Malfunction - not
able to accept or
record inputs | | No recording of the
data | No effect on AV control | None | | | | | | | | Use HMI | N/A | No additional risk, but stop
test if it is noted. | N/A |